博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
决策树算法(ID3)
阅读量:5217 次
发布时间:2019-06-14

本文共 6743 字,大约阅读时间需要 22 分钟。

Day

Outlook

Temperature

Humidity

Wind

PlayTennis

1

Sunny

Hot

High

Weak

No

2

Sunny

Hot

High

Strong

No

3

Overcast

Hot

High

Weak

Yes

4

Rain

Mild

High

Weak

Yes

5

Rain

Cool

Normal

Weak

Yes

6

Rain

Cool

Normal

Strong

No

7

Overcast

Cool

Normal

Strong

Yes

8

Sunny

Mild

High

Weak

No

9

Sunny

Cool

Normal

Weak

Yes

10

Rain

Mild

Normal

Weak

Yes

11

Sunny

Mild

Normal

Strong

Yes

12

Overcast

Mild

High

Strong

Yes

13

Overcast

Hot

Normal

Weak

Yes

14

Rain

Mild

High

Strong

No

对于上面例子,如何判断是否要去playtennis?

可以采用决策树的方式。

决策树是一种以实例为基础的归纳学习算法。从无序列/无规则的数据中,推导出树形表示的分类判决。

优点:计算量小、显示清晰

缺点:容易过拟合(需要修枝)(譬如,使用day做判决,一一对应虽然很准确,但是不能用在其他地方)、对时间顺序的数据,需要过多预处理工作

 

ID3算法:

1、对于实例,计算各个属性的信息增益

2、对于信息增益最大的属性P作为根节点,P的各个取值的样本作为子集进行分类

3、对于子集下,若只含有正例或反例,直接得到判决;否则递归调用算法,再次寻找子节点

 

 

熵:表示随机变量的不确定性。

条件熵:在一个条件下,随机变量的不确定性。

信息增益:熵 - 条件熵,在一个条件下,信息不确定性减少的程度。

 

用信息增益最大的属性作为结点,是因为最终去不去打球的不确定性,在获得该属性的结果后,不确定性大大降低。

也就是说,该属性对于打球的选择很重要。

 

 

对于解决上述问题,

首先,计算系统熵,PlayTennis

P(No) = 5/14

P(Yes) = 9/14

Entropy(S) = -(9/14)*log(9/14)-(5/14)*log(5/14) = 0.94

 

然后,计算各个属性的熵。

譬如:Wind

其中,Wind中取值为weak的记录有8条,其中,playtennis的正例6个,负例2个;取值为strong的记录有6条,正例为3个,负例为3个。

Entrogy(weak) = -(6/8)*log(6/8)-(2/8)*log(2/8) = 0.811

Entrogy(strong) = -(3/6)*log(3/6)-(3/6)*log(3/6) = 1.0

对应的信息增益为:

Gain(Wind) = Entropy(S) – (8/14)* Entrogy(weak)-(6/14)* Entrogy(strong) = 0.048

 

同理,Gain(Humidity = 0.151;Gain(Outlook = 0.247;Gain(Temperature = 0.029

 

此时,可以得到跟节点为:Outlook

对应点决策树:

Outlook分为三个集合:

Sunny:{1,2,8,9,11},正例:2、反例:3

Overcast:{3,7,12,13},正例:4、反例:0

Rain:{4,5,6,10,14},正例:3、反例:2

至此,可以得到:

Sunny:

Day

Outlook

Temperature

Humidity

Wind

PlayTennis

1

Sunny

Hot

High

Weak

No

2

Sunny

Hot

High

Strong

No

8

Sunny

Mild

High

Weak

No

9

Sunny

Cool

Normal

Weak

Yes

11

Sunny

Mild

Normal

Strong

Yes

 

Entropy(S) = -(3/5)*log(3/5)-(2/5)*log(2/5) = 0.971

对于Wind,weak时,正例为1,反例为2;Strong时,正例为1,反例为1.

Entrogy(weak) = -(1/3)*log(1/3)-(2/3)*log(2/3) = 0.918

Entrogy(strong) = -(1/2)*log(1/2)-(1/2)*log(1/2) = 1

 

Gain(Wind) = Entropy(S) – 3/5* Entrogy(weak)-2/5* Entrogy(strong) = 0.0202

 

同理,Gain(Humidity) = 0.971;Gain(Temperature) = 0.571

 

 

此时,可以画出部分决策树:

 

 

 

其中,python代码:

import math#香农公式计算信息熵def calcShannonEnt(dataset):    numEntries = len(dataset)    labelCounts = {}    for featVec in dataset:        currentLabel = featVec[-1]#最后一位表示分类        if currentLabel not in labelCounts.keys():            labelCounts[currentLabel] = 0        labelCounts[currentLabel] +=1             shannonEnt = 0.0    for key in labelCounts:        prob = float(labelCounts[key])/numEntries        shannonEnt -= prob*math.log(prob, 2)    return shannonEnt     def CreateDataSet():    dataset = [['sunny', 'hot','high','weak', 'no' ],               ['sunny', 'hot','high','strong', 'no' ],               ['overcast', 'hot','high','weak', 'yes' ],               ['rain', 'mild','high','weak', 'yes' ],               ['rain', 'cool','normal','weak', 'yes' ],                ['rain', 'cool','normal','strong', 'no' ],                ['overcast', 'cool','normal','strong', 'yes' ],                ['sunny', 'mild','high','weak', 'no' ],                ['sunny', 'cool','normal','weak', 'yes' ],                ['rain', 'mild','normal','weak', 'yes' ],                ['sunny', 'mild','normal','strong', 'yes' ],                ['overcast', 'mild','high','strong', 'yes' ],                ['overcast', 'hot','normal','weak', 'yes' ],                ['rain', 'mild','high','strong', 'no' ],               ]    labels = ['outlook', 'temperature', 'humidity', 'wind']    return dataset, labels#选取属性axis的值value的样本表def splitDataSet(dataSet, axis, value):    retDataSet = []    for featVec in dataSet:        if featVec[axis] == value:            reducedFeatVec = featVec[:axis]            reducedFeatVec.extend(featVec[axis+1:])            retDataSet.append(reducedFeatVec)         return retDataSet#选取信息增益最大的属性作为节点def chooseBestFeatureToSplit(dataSet):    numberFeatures = len(dataSet[0])-1    baseEntropy = calcShannonEnt(dataSet)    bestInfoGain = 0.0    bestFeature = -1    for i in range(numberFeatures):        featList = [example[i] for example in dataSet]        uniqueVals = set(featList)        newEntropy =0.0        for value in uniqueVals:            subDataSet = splitDataSet(dataSet, i, value)            prob = len(subDataSet)/float(len(dataSet))            newEntropy += prob * calcShannonEnt(subDataSet)        infoGain = baseEntropy - newEntropy        if(infoGain > bestInfoGain):            bestInfoGain = infoGain            bestFeature = i    return bestFeature#对于属性已经用完,仍然没有分类的情况,采用投票表决的方法 def majorityCnt(classList):    classCount ={}    for vote in classList:        if vote not in classCount.keys():            classCount[vote]=0        classCount[vote] += 1    return max(classCount)   def createTree(dataSet, labels):    classList = [example[-1] for example in dataSet]    #类别相同停止划分    if classList.count(classList[0])==len(classList):        return classList[0]    #属性用完,投票表决    if len(dataSet[0])==1:        return majorityCnt(classList)    bestFeat = chooseBestFeatureToSplit(dataSet)    bestFeatLabel = labels[bestFeat]    myTree = {bestFeatLabel:{}}    del(labels[bestFeat])    featValues = [example[bestFeat] for example in dataSet]    uniqueVals = set(featValues)    for value in uniqueVals:        subLabels = labels[:]        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)    return myTree                   myDat,labels = CreateDataSet()tree = createTree(myDat,labels)print tree

  

 在计算决策树的时候,sklearn库提供了决策树的计算方法(tree),但是,这个库提供的是:

scikit-learn uses an optimised version of the CART algorithm.

对于本文中使用的ID3算法是不支持的。

 然而

该库支持ID3算法。

按照官网说明,注意安装时的依赖库的版本,该升级的升级,该安装的安装即可。‘

from id3 import Id3Estimatorfrom id3 import export_graphvizX = [['sunny',    'hot',   'high',   'weak'],     ['sunny',    'hot',   'high',   'strong'],      ['overcast', 'hot',   'high',   'weak'],      ['rain',     'mild',  'high',   'weak'],      ['rain',     'cool',  'normal', 'weak'],      ['rain',     'cool',  'normal', 'strong'],      ['overcast', 'cool',  'normal', 'strong'],      ['sunny',    'mild',  'high',   'weak'],      ['sunny',    'cool',  'normal', 'weak'],      ['rain',     'mild',  'normal', 'weak'],      ['sunny',    'mild',  'normal', 'strong'],      ['overcast', 'mild',  'high',   'strong'],      ['overcast', 'hot',   'normal', 'weak'],      ['rain',     'mild',  'high',   'strong'], ]Y = ['no','no','yes','yes','yes','no','yes','no','yes','yes','yes','yes','yes','no']f = ['outlook','temperature','humidity','wind']estimator = Id3Estimator()estimator.fit(X, Y,check_input=True)export_graphviz(estimator.tree_, 'tree.dot', f)

  然后通过GraphViz工具生成PDF

dot -Tpdf tree.dot -o tree.pdf

  结果:

 

当然,你也可以进行预测判断:

print estimator.predict([['rain',     'mild',  'high',   'strong']])

  

 

转载于:https://www.cnblogs.com/pinking/p/7835384.html

你可能感兴趣的文章
iOS:创建静态库及其使用
查看>>
Rancher2.0与DataDog集成部署
查看>>
触发器学习
查看>>
微信小程序小红点未读消息如何实现?
查看>>
global 全局变量的用法
查看>>
关于websocket通讯
查看>>
HDU1495 非常可乐
查看>>
小奇的花园
查看>>
linux的启动顺序
查看>>
datetimepicker
查看>>
bzoj 3173: [Tjoi2013]最长上升子序列
查看>>
第 1 章 第 3 题 空间敏感排序问题 位向量实现( 数组位向量 )
查看>>
liferay增删改简单小练习
查看>>
什么是 AQS ?
查看>>
[2013 ACM/ICPC Asia Regional Hangzhou Online J/1010]hdu 4747 Mex (线段树)
查看>>
使用反射获取对象的步骤
查看>>
HDU 1018 Big Number【斯特林公式/log10 / N!】
查看>>
POJ 3997 Stock Chase
查看>>
软件工程第二次作业
查看>>
id 显示用户与用户组的信息
查看>>